Regularity and Non-existence Results for Some Free-interface Problems Related to Ginzburg-Landau Vortices
نویسنده
چکیده
We study regularity and non-existence properties for some free-interface problems arising in the study of limiting vorticities associated to the Ginzburg-Landau equations with magnetic field in two dimensions. Our results imply in particular that if these limiting vorticities concentrate on a smooth closed curve then they have a distinguished sign; moreover, if the domain is thin then solutions of the GinzburgLandau equations cannot have a number of vortices much larger than the applied magnetic field.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملVortex Motion Law for the Schrödinger-Ginzburg-Landau Equations
In the Ginzburg-Landau model for superconductivity a large Ginzburg-Landau parameter κ corresponds to the formation of tight, stable vortices. These vortices are located where an applied magnetic field pierces the superconducting bulk, and each vortex induces a quantized supercurrent about the vortex. The energy of large-κ solutions blows up near each vortex which brings about difficulties in a...
متن کاملExistence of Traveling Waves of Invasion for Ginzburg–Landau-type Problems in Infinite Cylinders
We study a class of systems of reaction–diffusion equations in infinite cylinders which arise within the context of Ginzburg–Landau theories and describe the kinetics of phase transformation in second-order or weakly first-order phase transitions with non-conserved order parameters. We use a variational characterization to study the existence of a special class of traveling wave solutions which...
متن کاملFrom the Ginzburg-Landau Model to Vortex Lattice Problems
We introduce a “Coulombian renormalized energy” W which is a logarithmic type of interaction between points in the plane, computed by a “renormalization.” We prove various of its properties, such as the existence of minimizers, and show in particular, using results from number theory, that among lattice configurations the triangular lattice is the unique minimizer. Its minimization in general r...
متن کامل